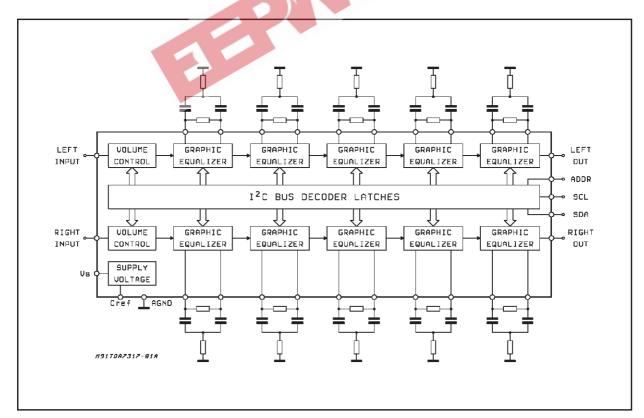
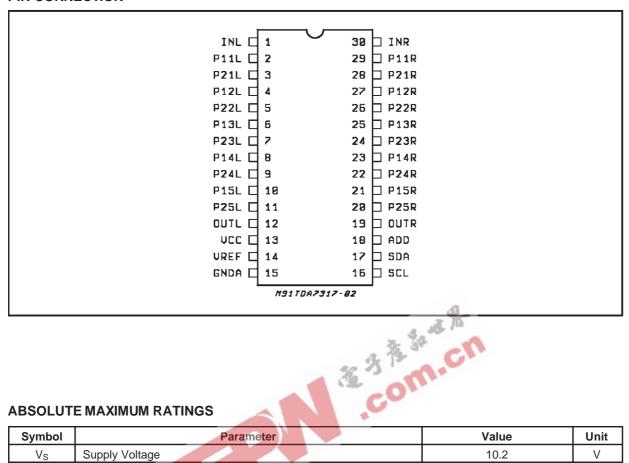


FIVE BANDS DIGITAL CONTROLLED GRAPHIC EQUALIZER

- VOLUME CONTROL IN 0.375dB STEP
- FIVE BANDS STEREO GRAPHIC EQUAL-IZER
- CENTER FREQUENCY, BANDWIDTH, MAX BOOST/CUT DEFINED BY EXTERNAL COM-PONENTS
- ±14dB CUT/BOOST CONTROL IN 2dB/STEP
- ALL FUNCTIONS PROGRAMMABLE VIA SE-RIALBUS
- VERY LOW DISTORTION
- VERY LOW NOISE AND DC STEPPING BY USE OF A MIXED BIPOLAR/CMOS TECH-NOLOGY


DESCRIPTION

The TDA7317 is a monolithic, digitally controlled graphic equalizer realized in BiCMOS mixed technology. The stereo signal, before any filtering, can be at-


tenuated up to -17.625dB in 0.375dB step. All the functions can be programmed via serial bus making easy to build a μP controlled system. Signal path is designed for very low noise and distortion.

BLOCK DIAGRAM

November 1999 1/12

PIN CONNECTION

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	10.2	V
T _{op}	Operating Temperature Range	-40 to +85	°C
T _{stg}	Storage Temperature Range	-55 to +150	°C
R _{tjvins}	Thermal Resistance Junction pins max	85	°C/W

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $V_{S} = 9V$, $R_{L} = 10K\Omega$, $R_{g} = 600\Omega$, $f = 1KHz V_{IN} = 10K\Omega$ 1Vrms, all controls in flat position (AV = 0dB) unless otherwise specified).

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
SUPPLY						
Vs	Supply Voltage		6	9	10	V
I _S	Supply Current		8	14	20	mA
SVR	Ripple Rejection	f = 300Hz to 10KHz	60	80		dB

ELECTRICAL CHARACTERISTICS (continued)

R ₁ Input Resistance	Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vishmax	NPUT						
Input Separation (1) 80 100 dB	R _I	Input Resistance		20	30	40	ΚΩ
Input Separation (1) 80 100 dB	V _{IN max}	Max Input Signal	THD = 0.3%	2	2.5		V_{RMS}
Volume Control Range		Input Separation (1)		80	100		dB
Avalin		ONTROL					
AVAMIN Min. Attenuation -0.5 0 0.5 dB	C _{RANGE}	Control Range			17.625		dB
Aster Step Resolution 0.175 0.375 0.575 dB		Min. Attenuation		-0.5	0	0.5	dB
Aster Step Resolution 0.175 0.375 0.575 dB	A _{VMAX}	Max. Attenuation		16.7	17.625	18.6	dB
EA		Step Resolution		0.175	0.375	0.575	dB
E _T		Attenuation Set Error		-1		1	dB
VDC DC Steps adjacent attenuation steps 0 3 mV		Tracking Error				0.5	dB
Thd		· · ·	adjacent attenuation steps		0		mV
C s Channel Separation BW = 20Hz to 20KHz B 20		•	1	•	-		
BW = 20Hz to 20KHz Rat, AV = 0dB A curve G A curve G A curve BW = 20Hz to 20KHz AV = 0dB A curve G A curve BW = 20Hz to 20KHz AV = 0dB All bands = max. boost All bands = max. cut All bands = max. cut G A curve G All bands = max. cut G A curve G All bands = max. cut G A curve G All bands = max. cut G A curve G All bands = max. cut G A curve G	THD	Distortion			0.01	0.1	%
BW = 20Hz to 20KHz Rat, AV = 0dB A curve G A curve G A curve BW = 20Hz to 20KHz AV = 0dB A curve G A curve BW = 20Hz to 20KHz AV = 0dB All bands = max. boost All bands = max. cut All bands = max. cut G A curve G All bands = max. cut G A curve G All bands = max. cut G A curve G All bands = max. cut G A curve G All bands = max. cut G A curve G	Cs	Channel Separation		80	100		dB
A curve BW = 20Hz to 20KHz AV = 0dB All bands = max. boost All bands = max. boost All bands = max. count All		<u> </u>	BW = 20Hz to 20KHz	5 /h		20	μV
BW = 20Hz to 20KHz AV = 0dB All bands = max. boost All bands = max. boost All bands = max. cut 6 µV µV Mill bands = max. cut 6 µV µV µV Mill bands = max. cut 6 µV µV µV µV µV µV µV			. 475		6		\/
All bands = max. cut 6			BW = 20Hz to 20KHz AV = 0dB	-			
S/N Signal to Noise Ratio A _V = 0dB; V _{ret} = 1V _{RMS} 100 dB							
Step Step Resolution	S/N	Signal to Noise Ratio			100		dB
Crange Control Range Max boost/cut ±12 ±14 ±16 dB VDC DC Steps Adiacent Control Steps 0.5 3 mV AUDIO OUTPUTS	B _{step}	Step Resolution		1	2	3	dB
VDC DC Steps Adiacent Control Steps 0.5 3 mV AUDIO OUTPUTS VO Output Voltage THD = 0.3% 2 2.5 V _{RM} RL Output Load Resistance 2 KΩ CL Output Load Capacitance 10 nF RO Output Resistance 5 10 20 Ω Vout DC Voltage Level 4.2 4.5 4.8 V BUS INPUTS VIL Input Low Voltage 3 V VIH Input High Voltage 3 V VO Output Voltage SDA Acknowledge IO = 1.6mA 0.4 V ADDRESS PIN (Internal 50KΩ pull down resistor) 1 V		Control Range	max boost/cut	±12	±14	±16	dB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Adiacent Control Steps		0.5	3	mV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	UDIO OU		·				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vo	Output Voltage	THD = 0.3%	2	2.5		V _{RMS}
R _O Output Resistance 5 10 20 Ω V _{OUT} DC Voltage Level 4.2 4.5 4.8 V BUS INPUTS V_{IL} Input Low Voltage 1 V V_{IH} Input High Voltage 3 V I_{IN} Input Current -5 +5 μ A V_O Output Voltage SDA Acknowledge $I_O = 1.6$ mA 0.4 V ADDRESS PIN (Internal 50KΩ pull down resistor) V_{IL} Input Low Voltage 1 V	RL	Output Load Resistance		2			ΚΩ
R _O Output Resistance 5 10 20 Ω V _{OUT} DC Voltage Level 4.2 4.5 4.8 V BUS INPUTS V_{IL} Input Low Voltage 1 V V_{IH} Input High Voltage 3 V I_{IN} Input Current -5 +5 μ A V_O Output Voltage SDA Acknowledge $I_O = 1.6$ mA 0.4 V ADDRESS PIN (Internal 50KΩ pull down resistor) V_{IL} Input Low Voltage 1 V		 				10	nF
VOUT DC Voltage Level 4.2 4.5 4.8 V BUS INPUTS VIL Input Low Voltage 1 V VIH Input High Voltage 3 V IIN Input Current -5 +5 μ A Vo Output Voltage SDA Acknowledge Io = 1.6mA 0.4 V ADDRESS PIN (Internal 50KΩ pull down resistor) VIL Input Low Voltage 1 V		 		5	10	20	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				4.2	4.5	4.8	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VIL	Input Low Voltage				1	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				3			V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				+5	цΑ
ADDRESS PIN (Internal 50KΩ pull down resistor) V _{IL} Input Low Voltage 1 V		Output Voltage SDA	I _O = 1.6mA				
V _{IL} Input Low Voltage 1 V	ADDRESS	<u>-</u>	esistor)	1			
			<u> </u>			1	V
	V _{IH}	Input High Voltage		V _{CC} -1V			V

NOTE: The input is grounded thru the 2.2 $\!\mu\text{P}$ capacitors

57

DEVICE DESCRIPTION

The TDA7317 is a five bands, digitally controlled stereo Graphic Equalizer.

The device is intended for high quality audio application in Hi-Fi, TV and car radio systems where feature like low noise and THD are key factors. A mixed Bipolar Cmos Technology allows:

Cmos analog switches for pop free commutations, high frequency op.amp. (GWB = 10MHz) and high linearity polisilicon resistor for THD = 0.01 (at Vin = 1Vrms) and a S/N ratio of 102dB. The internal Block Diagram is shown on page 1.

The first stage is a volume control. The control range is 0 to -17.625dB with 0.375dBstep.

The very high resolution (0.375dB step) allows the implementation of closed loop amplitude control system completely free from any acustical effect (stepping variation and pumping effect).

The volume control is followed by a serial five bands equalizer. Each filtering cell is the biquad cell shown in fig. 1

The internal resistor string is fixing the boost/cut value while the buffer makes the Q (quality factor) and central frequency, set by external components, fully indipendent from the internal resistors. Each filtering cell is realized using only 4 external components (2 capacitors and 2 resistors) allowing a flexible selection of centre frequency fo, Q factor and gain. Here below the basic formulae and the key features of each band pass filter are reported:

 f_0 = center frequency

Gv = gain/loss at the center frequency f_o

Gv = 20log(Av)

$$Q = \frac{f_0}{f_2 - f_1}$$

where f_2 , $f_1 = 3dB$ Bandwidth limits.

$$A_{v} = \frac{(R2 \cdot C2) + (R2 \cdot C1) + (R1 \cdot C1)}{(R2 \cdot C1) + (R2 \cdot C2)}$$

$$Q = \frac{\sqrt{(R1 \cdot C1 \cdot R2 \cdot C2)}}{(R2 \cdot C1) + (R2 \cdot C2)}$$

$$f_0 = \frac{1}{2\pi \cdot \sqrt{(R1 \cdot R2 \cdot C1 \cdot C2)}}$$

If C1 is fixed, then:

$$C2 = \frac{Q^2}{A_V - 1 - Q^2} \cdot C1$$

$$R2 = \frac{1}{2 \pi \cdot C1 \cdot f_0 \cdot \frac{(A_v - 1) \cdot Q}{(A_v - 1 - Q^2)}}$$

$$R1 = \frac{(A_{V} - 1)^{2}}{A_{V} - 1 - Q^{2}} \cdot R2$$

Likewise, the components'values can be determined by fixing one of the other three parameters. Referring to fig. 1 the suggested R2 value should be higher than $2K\Omega$ in order to have a good THD (internal op. amp. current limit).

Viceversa the R1 value should be equal or lower than 51K Ω in order to keep the "click"(DC step) very low.

A typical application is shown by fig. 2

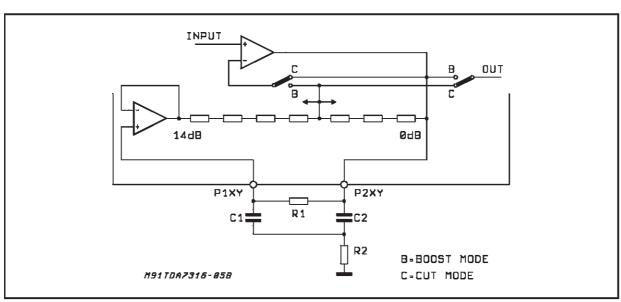
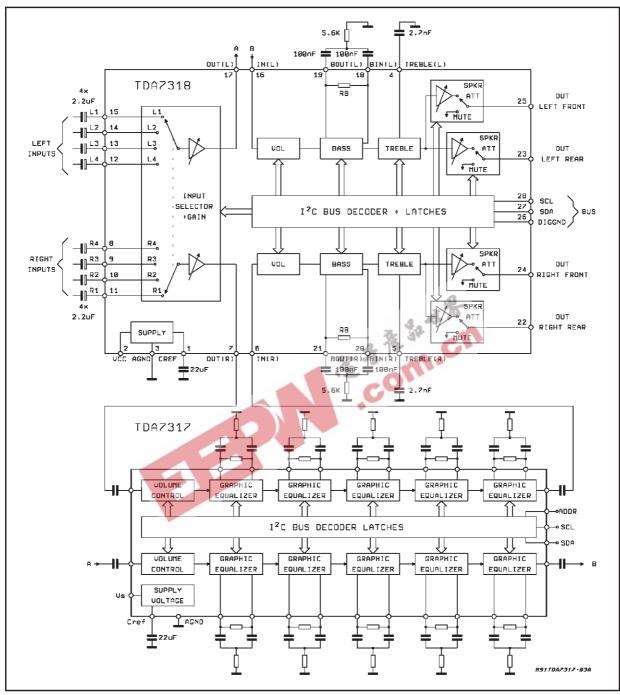



Figure 2: Application Circuit

The five bands graphic equalizer is used in conjunction with a TDA7318 (or another audioprocessor of the SGS-THOMSON 731X family).

The audioprocessor bass and treble tone can furnish two extra filter bands.

Application requiring higher number of external equalizer bands could be implemented by cascading 2 or more TDA7317 devices. In fact the

dedicated ADDR pin allows 2 addresses selection. Anyway, the address of the graphic equalizer is different from the audioprocessor one.

For example 11 bands are implemented by use of 2 TDA7317 plus an audioprocessor (TDA731X family).

In case one filtering cell is not needed, a short circuit must be provided between the P1xy and P2xy pins.

I²C BUS INTERFACE

Data transmission from microprocessor to the TDA7317 and viceversa takes place thru the 2 wires I²C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be externally connected).

Data Validity

As shown in fig. 3, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

Start and Stop Conditions

As shown in fig.4 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.

Byte Format

Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first.

Figure 3: Data Validity on the I²CBUS

Acknowledge

The master (μ P) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see fig. 5). The peripheral (audioprocessor) that acknowledges has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock pulse.

The audioprocessor which has been addressed has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer.

Transmission without Acknowledge

Avoiding to detect the acknowledge of the audio-processor, the μP can use a simplier transmission: simply it generates the 9th clock pulse without checking the slave acknowledging, and then sends the new data.

This approach of course is less protected from misworking and decreases the noise immunity.

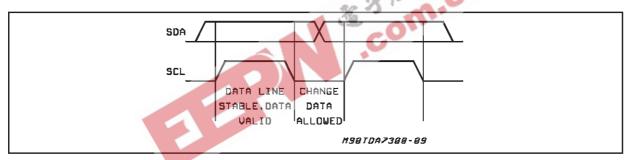


Figure 4: Timing Diagram of 12CBUS

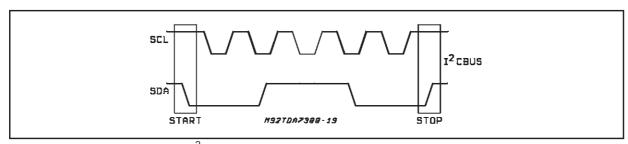
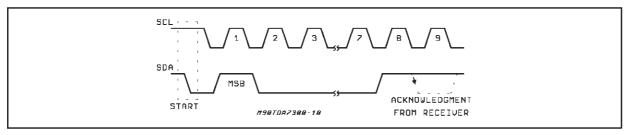
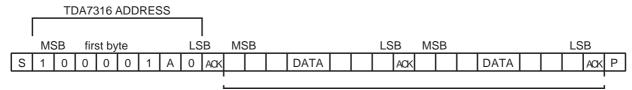



Figure 5: Acknowledge on the I²CBUS

SOFTWARE SPECIFICATION


Interface Protocol

The interface protocol comprises:

- A start condition (s)
- A chip address byte, containing the TDA7317

address (the 8th bit of the byte must be 0). The TDA7317 must always acknowledge at the end of each transmitted byte.

- A sequence of data (N-bytes + acknowledge)
- A stop condition (P)

Data Transferred (N-bytes + Acknowledge)

ACK = Acknowledge

S = Start

P = Stop

MAX CLOCK SPEED 100kbits/s

SOFTWARE SPECIFICATION

SOFT Chip a								The state of the s
1 MSB	0	0	0	0	1	Α	0 LSB	36 3 12 M.C.
A = Log A = 1 i A = 0 i	f ADD	R pin :	= oper	1	to gro	und		CON

SOFTWARE SPECIFICATION (continued)

DATA BYTES (detailed description)

Volume

MSB							LSB	FUNCTION
0	Χ	B2	B1	В0	A2	A1	A0	Volume 0.375dB steps
					0	0	0	0
					0	0	1	-0.375
					0	1	0	-0.75
					0	1	1	-1.125
					1	0	0	-1.5
					1	0	1	-1.875
					1	1	0	-2.25
					1	1	1	-2.625
0	Χ	B2	B1	В0	A2	A1	A0	Volume -3dB steps
		0	0	0				0
		0	0	1				-3
		0	1	0				-6
		0	1	1				-9
		1	0	0				-12
		1	0	1				-15

Graphic Equalizer

MSB							LSB	FUNCTION
1	D3	D2	D1	D0	S2	C1	C0	
	0 0 0 0	0 0 1 1 0	0 1 0 1 0					Band 1 Band 2 Band 3 Band 4 Band 5
	D3 D3	D2 D2	D1 D1	1 0	C2 C2	C1 C1	C0 C0	cut Boost
					0 0 0 0 1 1 1	0 0 1 1 0 0	0 1 0 1 0 1 0	0dB 2dB 4dB 6dB 8dB 10dB 12dB 14dB

AX = 0.375dB steps, BX = 3dB steps, CX = 2dB steps, X = dont'care

STATUS AFTER POWER-ON RESET							
Volume	-17.25dB						
Graphic equalizer bands	-12dB						

APPLICATION INFORMATION

A typical application is indicated in figure 4, while

the P.C. Board and components layout are reported in figure 5. The external components, are calculated for 2 different max boost/cut conditions

TABLE 1: Max Boost/cut = 20 dB (each cell = $\pm 14 \text{dB}$)

	F (HZ)	Q	R1 (KΩ)	R2 (KΩ)	C1 (nF)	C2 (nF)	Av max (dB)
BAND 1	10363.38	1.49	47	5.1	0.820	1.2	13.52
BAND 2	261.03	1.49	47	5.1	33	47	13.63
BAND 3	1036.34	1.49	47	5.1	8.2	12	13.52
BAND 4	3168.08	1.49	47	5.1	2.7	3.9	13.57
BAND 5	59.75	1.11	43	7.5	220	100	13.88

For THD performance the sequence Band 1, 2, 3, 4, 5, is recommended

TABLE2: Max Boost/cut = 17dB (each cell = $\pm 12dB$)

	F (HZ)	Q	R1 (KΩ)	R2 (KΩ)	C1 (nF)	C2 (nF)	Av max (dB)
BAND 1	10158.00	1.15	33	6.2	1.2	1	11.83
BAND 2	250.81	1.21	30	5.1	47	56	11.33
BAND 3	977.34	1.20	39	6.8	10	10	11.75
BAND 4	3429.00	1.25	39	6.2	2.7	3.3	11.67
BAND 5	61.82	1.15	33	6.2	180	180	11.27

Figure 4

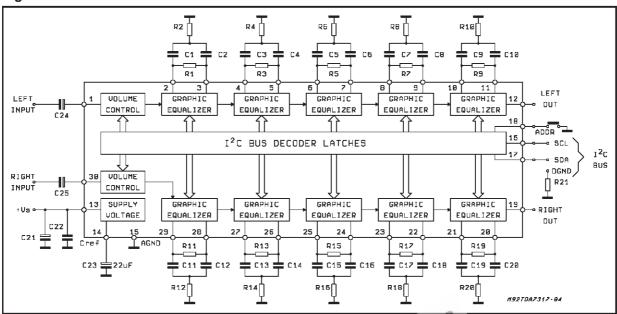
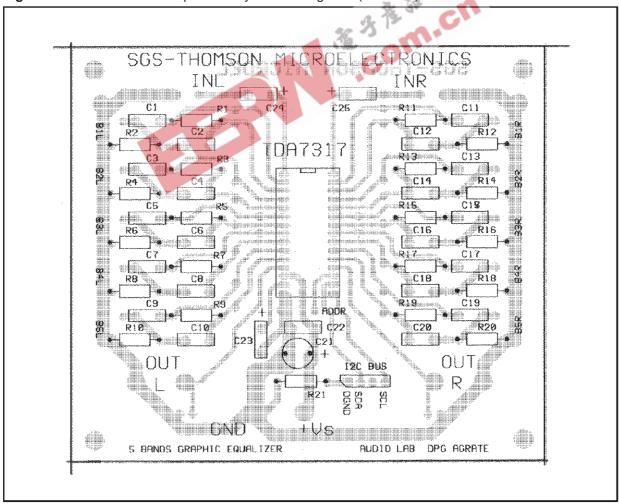



Figure 5: PCP Board and components layout of the figure 4 (scale 1.1)

4

Measurements done on the test jig of fig. 5 using the components indicated in table2, are reported

Figure 6: Frequency Response

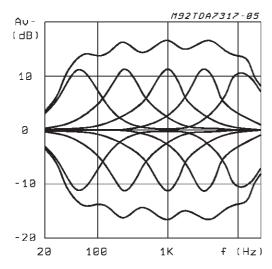
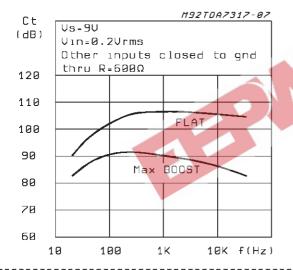
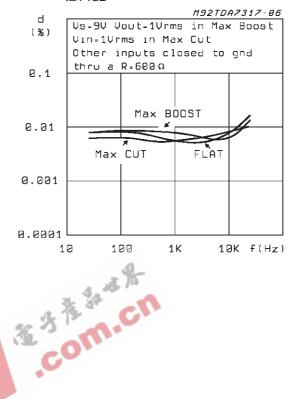
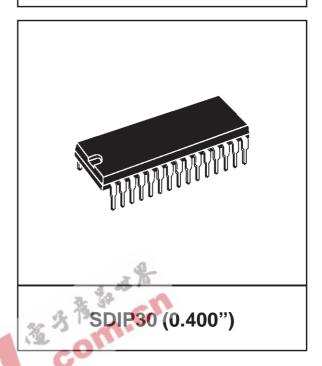
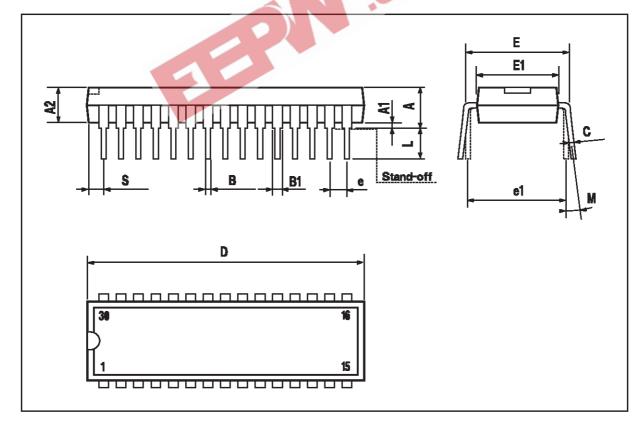




Figure 8: Cross Talk vs Frequency

in figg. 6, 7,8.

Figure 7 THD vs Frequency Max Boost/cut = :±14dB




Purchase of I^2C Components of SGS-THOMSON Microlectronics, conveys a license under the Philips I^2C Patent Rights to use these components in an I^2C system, provided that the system conforms to the I^2C Standard Specifications as defined by Philips.

5

DIM.		mm		inch						
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.				
А			5.08			0.20				
A1	0.51			0.020						
A2	3.05	3.81	4.57	0.12	0.15	0.18				
В	0.36	0.46	0.56	0.014	0.018	0.022				
B1	0.76	0.99	1.40	0.030	0.039	0.055				
С	0.20	0.25	0.36	0.008	0.01	0.014				
D	27.43	27.94	28.45	1.08	1.10	1.12				
E	10.16	10.41	11.05	0.400	0.410	0.435				
E1	8.38	8.64	9.40	0.330	0.340	0.370				
е		1.778			0.070					
e1		10.16			0.400					
L	2.54	3.30	3.81	0.10	0.13	0.15				
М	0°(min.), 15°(max.)									
S	0.31			0.012						

OUTLINE AND MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 $\ \odot$ 1999 STMicroelectronics – Printed in Italy – All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com