TL497AC, TL497AI, TL497AY SWITCHING VOLTAGE REGULATORS

- High Efficiency . . . 60\% or Greater
- Output Current . . . 500 mA
- Input Current Limit Protection
- TTL-Compatible Inhibit
- Adjustable Output Voltage
- Input Regulation... 0.2\% Typ
- Output Regulation ... 0.4\% Typ
- Soft Start-Up Capability

TL497AC, TL497AI . . . D, N, OR PW PACKAGE
(TOP VIEW)

NC - No internal connection
\dagger BASE (11) and BASE DRIVE (12) are used for device testing only.
They are not normally used in circuit applications of the device.

description

The TL497AC and TL497AI incorporate on a single monolithic chip all the active functions required in the construction of switching voltage regulators. They can also be used as the control element to drive external components for high-power-output applications. The TL497AC and TL497AI were designed for ease of use in step-up, step-down, or voltage inversion applications requiring high efficiency.
The TL497AC and TL497AI are fixed-on-time variable-frequency switching-voltage-regulator control circuits. The switch-on time is programmed by a single external capacitor connected between FREQ CONTROL and GND. This capacitor, C_{T}, is charged by an internal constant-current generator to a predetermined threshold. The charging current and the threshold vary proportionally with V_{CC}. Thus, the switch-on time remains constant over the specified range of input voltage (4.5 V to 12 V). Typical on times for various values of $\mathrm{C}_{\boldsymbol{T}}$ are as follows:

TIMING CAPACITOR, CT (pF)	200	250	350	400	500	750	1000	1500	2000
ON TIME $(\mu \mathrm{s})$	19	22	26	32	44	56	80	120	180

The output voltage is controlled by an external resistor ladder network (R1 and R2 in Figures 1, 2, and 3) that provides a feedback voltage to the comparator input. This feedback voltage is compared to the reference voltage of 1.2 V (relative to SUBSTRATE) by the high-gain comparator. When the output voltage decays below the value required to maintain 1.2 V at the comparator input, the comparator enables the oscillator circuit, which charges and discharges $\mathrm{C}_{\boldsymbol{T}}$ as described above. The internal pass transistor is driven on during the charging of C_{\mp}. The internal transistor may be used directly for switching currents up to 500 mA . Its collector and emitter are uncommitted, and it is current driven to allow operation from the positive supply voltage or ground. An internal Schottky diode matched to the current characteristics of the internal transistor is also available for blocking or commutating purposes. The TL497AC and TL497AI also have on-chip current-limit circuitry that senses the peak currents in the switching regulator and protects the inductor against saturation and the pass transistor against overstress. The current limit is adjustable and is programmed by a single sense resistor, R_{CL}, connected between V_{CC} and CUR LIM SENS. The current-limit circuitry is activated when 0.7 V is developed across $R_{\text {CL }}$. External gating is provided by the INHIBIT input. When the INHIBIT input is high, the output is turned off.

AVAILABLE OPTIONS

$\mathbf{T}_{\mathbf{A}}$	PACKAGED DEVICES			CHIP
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	SURFACE MOUNT (D)	PLASTIC DIP (N)	SHRINK SMALL OUTLINE (PW)	TL497ACD
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TL497AYACN	TL497ACPW	TL497A	TL497AIN

description (continued)

Simplicity of design is a primary feature of the TL497AC and TL497AI. With only six external components (three resistors, two capacitors, and one inductor), the TL497AC and TL497AI operates in numerous voltage conversion applications (step-up, step-down, invert) with as much as 85% of the source power delivered to the load. The TL497AC and TL497AI replace the TL497 in all applications.

The TL497AC is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, and the TL497AI is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

functional block diagram

\dagger BASE and BASE DRIVE are used for device testing only. They are not normally used in circuit applications of the device.

TL497AC, TL497AI, TL497AY SWITCHING VOLTAGE REGULATORS

TL497AY chip information

This chip, when properly assembled, displays characteristics similar to the TL497AC. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

TL497AC, TL497AI, TL497AY SWITCHING VOLTAGE REGULATORS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage, $\mathrm{V}_{\text {CC }}$ (see Note 1) 15 V
Output voltage, V_{O} 35 V
Input voltage, $\mathrm{V}_{\text {(}}$ (COMP INPUT) 5 V
Input voltage, V_{I} (INHIBIT) 5 V
Diode reverse voltage 35 V
Power switch current 750 mA
Diode forward current 750 mA
Continuous total power dissipation See Dissipation Rating Table
Operating free-air temperature range, T_{A} : TL497AC $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
TL497AI $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature range, $T_{\text {stg }}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 60 seconds $260^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values except diode voltages are with respect to network ground terminal.
DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq \mathbf{2 5 ^ { \circ }} \mathrm{C}$ POWER RATING	DERATING FACTOR	DERATE ABOVE TA	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \\ \text { POWER RATING } \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \\ \text { POWER RATING } \end{gathered}$
D	950 mW	$7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	608 mW	494 mW
N	1000 mW	$9.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$41^{\circ} \mathrm{C}$	733 mW	595 mW
PW	700 mW	$5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	448 mW	-

recommended operating conditions

			MIN	MAX	UNIT
Supply voltage,	CC		4.5	12	V
High-level input	voltage, V_{IH}, INHIB		2.5		V
Low-level input	voltage, V_{IL}, INHIB			0.8	V
	Step-up configura		$\mathrm{V}_{1}+2$	30	
Output voltage	Step-down config		$V_{\text {ref }}$	$\mathrm{V}_{1}-1$	V
	Inverting regulato		$-V_{\text {ref }}$	-25	
Power switch cu	rent			500	mA
Diode forward c	rrent			500	mA
perating free-air	mperature T_{A}	TL497AC	0	70	${ }^{\circ} \mathrm{C}$
erating free-ar	mperature, $\mathrm{T}_{\text {A }}$	TL497AI	-40	85	C

TL497AC, TL497AI, TL497AY SWITCHING VOLTAGE REGULATORS

electrical characteristics over recommended operating conditions, $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}{ }^{\text {t }}$	TL497AC			TL497AI			UNIT	
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX			
High-level input current, INHIBIT	$\mathrm{V}_{1(1)}=5 \mathrm{~V}$			Full range		0.8	1.5		0.8	1.5	mA
Low-level input current, INHIBIT	$\mathrm{V}_{1(1)}=0 \mathrm{~V}$		Full range		5	10		5	20	$\mu \mathrm{A}$	
Comparator reference voltage	$\mathrm{V}_{1}=4.5 \mathrm{~V}$ to 6 V		Full range	1.08	1.2	1.32	1.14	1.2	1.26	V	
Comparator input bias current	$\mathrm{V}_{\mathrm{I}}=6 \mathrm{~V}$		Full range		40	100		40	100	$\mu \mathrm{A}$	
Switch on-state voltage	$\mathrm{V}_{\mathrm{I}}=4.5 \mathrm{~V}$	$\mathrm{I}=100 \mathrm{~mA}$	$25^{\circ} \mathrm{C}$		0.13	0.2		0.13	0.2	V	
		$1 \mathrm{O}=500 \mathrm{~mA}$	Full range			0.85			1		
Switch off-state current	$\mathrm{V}_{\mathrm{I}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V}$		$25^{\circ} \mathrm{C}$		10	50		10	50	$\mu \mathrm{A}$	
			Full range			200			500		
Sense voltage, CUR LIM SENS	$\mathrm{V}_{\mathrm{I}}=6 \mathrm{~V}$		$25^{\circ} \mathrm{C}$	0.45		1	0.45		1	V	
Diode forward voltage	$\mathrm{I} \mathrm{O}=10 \mathrm{~mA}$		Full range		0.75	0.85		0.75	0.95	V	
	$\mathrm{I}=100 \mathrm{~mA}$		Full range		0.9	1		0.9	1.1		
	$\mathrm{I}=500 \mathrm{~mA}$		Full range		1.33	1.55		1.33	1.75		
Diode reverse voltage	$\mathrm{I}=500 \mu \mathrm{~A}$		Full range	30			30			V	
	$\mathrm{I} \mathrm{O}=200 \mu \mathrm{~A}$		Full range								
On-state supply current			$25^{\circ} \mathrm{C}$		11	14		11	14	mA	
			Full range			15			16		
Off-state supply current			$25^{\circ} \mathrm{C}$		6	9		6	9	mA	
			Full range			10			11		

\dagger Full range for the TL497AC is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and full range for the TL497AI is $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
\ddagger All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
electrical characteristics over recommended operating conditions, $\mathrm{V}_{\mathrm{CC}}=\mathbf{6} \mathrm{V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	TL497AY		UNIT
		MIN TYP	MAX	
High-level input current, INHIBIT	$\mathrm{V}_{1(1)}=5 \mathrm{~V}$	0.8		mA
Low-level input current, INHIBIT	$\mathrm{V}_{1(1)}=0 \mathrm{~V}$	5		$\mu \mathrm{A}$
Comparator reference voltage	$\mathrm{V}_{\mathrm{I}}=4.5 \mathrm{~V}$ to 6 V	1.2		V
Comparator input bias current	$\mathrm{V}_{\mathrm{I}}=6 \mathrm{~V}$	40		$\mu \mathrm{A}$
Switch on-state voltage	$\mathrm{V}_{\mathrm{I}}=4.5 \mathrm{~V}, \quad \mathrm{IO}=100 \mathrm{~mA}$	0.13		V
Switch off-state current	$\mathrm{V}_{\mathrm{I}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V}$	10		$\mu \mathrm{A}$
Diode forward voltage	$\mathrm{I}=10 \mathrm{~mA}$	0.75		V
	$\mathrm{I}=100 \mathrm{~mA}$	0.9		
	$\mathrm{l}=500 \mathrm{~mA}$	1.33		
On-state supply current		11		mA
Off-state supply current		6		mA

APPLICATION INFORMATION

DESIGN EQUATIONS

- $\mathrm{I}_{(\mathrm{PK})}=2 \mathrm{I}_{\mathrm{O}}{ }^{\max }\left[\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{V}_{\mathrm{I}}}\right]$
- $\quad \mathrm{L}(\mu \mathrm{H})=\frac{\mathrm{V}_{1}}{\mathrm{I}_{(\mathrm{PK})}} \mathrm{t}_{\text {on }}(\mu \mathrm{s})$

Choose L (50 to $500 \mu \mathrm{H})$, calculate ton (25 to $150 \mu \mathrm{~s}$)

- $\mathrm{C}_{\mathrm{T}}(\mathrm{pF}) \approx 12 \mathrm{t}_{\mathrm{on}}(\mu \mathrm{s})$
(Peak Switching Current $\left.=\mathrm{I}_{(}(\mathrm{PK})<500 \mathrm{~mA}\right)$

EXTENDED POWER CONFIGURATION
(using external transistor)
Figure 1. Positive Regulator, Step-Up Configurations

APPLICATION INFORMATION

BASIC CONFIGURATION
(Peak Switching Current $=1(P K)<500 \mathrm{~mA})$

Figure 2. Positive Regulator, Step-Down Configurations

APPLICATION INFORMATION

BASIC CONFIGURATION
(Peak Switching Current $=\mathrm{l}(\mathrm{PK})<500 \mathrm{~mA})$

EXTENDED POWER CONFIGURATION
(using external transistor)
† Use external catch-diode, e.g., 1N4001, when building an inverting supply with the TL497A.
Figure 3. Inverting Applications

APPLICATION INFORMATION

EXTENDED INPUT CONFIGURATION WITHOUT CURRENT LIMIT

CURRENT LIMIT FOR EXTENDED INPUT CONFIGURATION
Figure 4. Extended Input Voltage Range ($\mathrm{V}_{\mathrm{I}}>12 \mathrm{~V}$)

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

