
$10^{12}\Omega$ (typ.)

-50 dB (typ.)

40 MHz (typ.)

@ f $_{IS}\!=\!0.9$ MHz, $R_L\!=\,1~k\Omega$

CD4016BM/CD4016BC Quad Bilateral Switch

General Description

The CD4016BM/CD4016BC is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals. It is pin-for-pin compatible with CD4066BM/ CD4066BC.

Features ■ Wide supply voltage range 3V to 15V

■ Wide range of digital and analog switching ±7.5 V_{PEAK} ■ "ON" resistance for 15V operation 400Ω (typ.)

■ Matched "ON" resistance over 15V

 $\Delta R_{ON} = 10\Omega$ (typ.) signal input ■ High degree of linearity

> @ $f_{IS} = 1 \text{ kHz}, V_{IS} = 5 V_{p-p},$ $V_{DD}\!-\!V_{SS}\!=\!10V,\,R_L\!=\!10\,k\Omega$

■ Extremely low "OFF" switch leakage 0.1 nA (typ.) $V_{DD} - V_{SS} = 10V$

0.4% distortion (typ.)

T_A = 25°C

· Commutating switch ■ Digital signal switching/multiplexing ■ CMOS logic implementation

■ Analog-to-digital/digital-to-analog conversion

■ Extremely high control input impedance

■ Low crosstalk between switches

■ Frequency response, switch "ON"

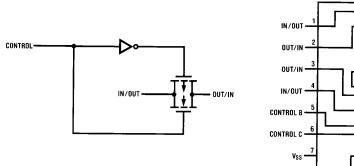
■ Analog signal switching/multiplexing

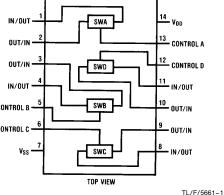
Applications

Signal gating

Chopper

Squelch control


Modulator/Demodulator


■ Digital control of frequency, impedance, phase, and an-

alog-signal gain

Dual-In-Line Package

Schematic and Connection Diagrams

Order Number CD4016B

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

(Notes 1 and 2)

 $\begin{array}{lll} V_{DD} \, \text{Supply Voltage} & -0.5 \text{V to} \, + 18 \text{V} \\ V_{IN} \, \text{Input Voltage} & -0.5 \text{V to} \, V_{DD} \, + \, 0.5 \text{V} \end{array}$

Ts Storage Temperature Range -65°C to + 150°C

Power Dissipation (PD)

Dual-In-Line 700 mW 5mall Outline 500 mW Lead Temperature (Soldering, 10 seconds) 260°C

Recommended Operating Conditions (Note 2)

 V_{DD} Supply Voltage 3V to 15V V_{IN} Input Voltage 0V to V_{DD}

T_A Operating Temperature Range

CD4016BM -55°C to +125°C CD4016BC -40°C to +85°C

DC Electrical Characteristics CD4016BM (Note 2)

Symbol	Parameter	Conditions	_55°C		25°C			125°C		Units
Syllibol	raiailietei	Conditions	Min	Max	Min	Тур	Max	Min	Max	Jilles
I _{DD}	Quiescent Device Current	V _{DD} =5V, V _{IN} =V _{DD} or V _{SS}		0.25		0.01	0.25		7.5	μΑ
		$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		0.5		0.01	0.5		15	μA
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		1.0		0.01	1.0		30	μΑ
Signal In	puts and Outputs				•					
R _{ON}	"ON" Resistance	$R_L = 10 \text{ k}\Omega \text{ to } \frac{V_{DD} - V_{SS}}{2}$								
		$V_C = V_{DD}$, $V_{IS} = V_{SS}$ or V_{DD}								
		V _{DD} =10V		600		250	660		960	Ω
		V _{DD} =15V		360		200	400		600	Ω
		$R_L = 10 \text{ k}\Omega \text{ to } \frac{V_{DD} - V_{SS}}{2}$								
		$V_C = V_{DD}$								
		$V_{DD} = 10V, V_{IS} = 4.75 \text{ to } 5.25V$		1870		850	2000		2600	Ω
		$V_{DD} = 15V, V_{IS} = 7.25 \text{ to } 7.75V$		775		400	850		1230	Ω
ΔR _{ON}	Δ"ON" Resistance	$R_L = 10 \text{ k}\Omega \text{ to } \frac{V_{DD} - V_{SS}}{2}$								
	Between any 2 of	$V_C = V_{DD}$, $V_{IS} = V_{SS}$ to V_{DD}								
	4 Switches	V _{DD} =10V				15				Ω
	(In Same Package)	V _{DD} =15V				10				Ω
I _{IS}	Input or Output Leakage Switch "OFF"	V _C =0, V _{DD} =15V V _{IS} =15V and 0V,		±50		± 0.1	±50		±500	nA
		V _{OS} =0V and 15V								
Control	Inputs				•					
V _{ILC}	Low Level Input Voltage	V _{IS} =V _{SS} and V _{DD}								
		$V_{OS} = V_{DD}$ and V_{SS}								
		$I_{IS} = \pm 10 \mu A$								١.,
		V _{DD} =5V		0.9			0.7		0.5	V
		V _{DD} =10V		0.9 0.9			0.7 0.7		0.5 0.5	V V
		V _{DD} =15V		0.9			0.7		0.5	
V _{IHC}	High Level Input Voltage	V _{DD} =5V	3.5		3.5			3.5		V
		V _{DD} =10V (see Note 6 and	7.0		7.0			7.0		V
		V _{DD} =15V Figure 8)	11.0		11.0			11.0		V
I _{IN}	Input Current	$V_{DD} - V_{SS} = 15V$		±0.1		±10 ⁻⁵	±0.1		±1.0	μΑ
		$V_{DD} \ge V_{IS} \ge V_{SS}$								
		$V_{DD} \ge V_C \ge V_{SS}$			l			1		

Symbol	Parameter	Conditions	-4	10°C		25°C		8	5°C	Units
	raidilletei	Conditions	Min	Max	Min	Тур	Max	Min	Max	Jints
I _{DD}	Quiescent Device Current	V _{DD} =5V, V _{IN} =V _{DD} or V _{SS} V _{DD} =10V, V _{IN} =V _{DD} or V _{SS} V _{DD} =15V, V _{IN} =V _{DD} or V _{SS}		1.0 2.0 4.0		0.01 0.01 0.01	1.0 2.0 4.0		7.5 15 30	μΑ μΑ μΑ
Signal In	puts and Outputs									
$\begin{array}{c c} R_{ON} & \text{"ON" Resistance} & R_L = 10 \text{ k}\Omega \text{ to} \frac{V_{DD} - V_{SS}}{2} \\ V_C = V_{DD}, V_{IS} = V_{SS} \text{ or } V_{DD} \\ V_{DD} = 10V \\ V_{DD} = 15V \\ R_L = 10 \text{ k}\Omega \text{ to} \frac{V_{DD} - V_{SS}}{2} \\ V_C = V_{DD} \\ V_{DD} = 10V, V_{IS} = 4.75 \text{ to } 5.25V \\ V_{DD} = 15V, V_{IS} = 7.25 \text{ to } 7.75V \\ \end{array}$			610 370 1900 790		275 200 850 400	660 400 2000 850		840 520 2380 1080	Ω Ω Ω	
ΔR _{ON}	Δ"ON" Resistance Between any 2 of 4 Switches (In Same Package)	$\begin{array}{c} R_L = 10 \text{ k}\Omega \text{ to} \frac{V_{DD} - V_{SS}}{2} \\ V_C = V_{DD}, V_{IS} = V_{SS} \text{ to } V_{DD} \\ V_{DD} = 10V \\ V_{DD} = 15V \end{array}$				15 10				ΩΩ
I _{IS}	Input or Output Leakage Switch "OFF"	V _C =0, V _{DD} =15V V _{IS} =0V or 15V, V _{OS} =15V or 0V		±50		±0.1	±50		±200	nA
Control	Inputs									
V _{ILC}	Low Level Input Voltage	$ \begin{array}{c} V_{IS}\!=\!V_{SS} \text{ and } V_{DD} \\ V_{OS}\!=\!V_{DD} \text{ and } V_{SS} \\ I_{IS}\!=\!\pm 10 \ \mu\text{A} \\ V_{DD}\!=\!5V \\ V_{DD}\!=\!10V \\ V_{DD}\!=\!15V \end{array} $		0.9 0.9 0.9			0.7 0.7 0.7		0.4 0.4 0.4	V V
V _{IHC}	High Level Input Voltage	V _{DD} =5V V _{DD} =10V (see Note 6 and V _{DD} =15V <i>Figure 8</i>)	3.5 7.0 11.0		3.5 7.0 11.0			3.5 7.0 11.0		V V V
I _{IN}	Input Current	$V_{CC}-V_{SS}=15V$ $V_{DD}\geq V_{IS}\geq V_{SS}$ $V_{DD}\geq V_{C}\geq V_{SS}$		±0.3		±10 ⁻⁵	±0.3		±1.0	μΑ

AC Electrical Characteristics * $T_A = 25^{\circ}C$, $t_f = t_f = 20$ ns and $V_{SS} = 0V$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} , t _{PLH}	Propagation Delay Time Signal Input to Signal Output	$V_C = V_{DD}$, $C_L = 50$ pF, (Figure 1) $R_L = 200$ k				
		V _{DD} =5V		58	100	ns
		V _{DD} =10V		27	50	ns
		V _{DD} =15V		20	40	ns
t _{PZH} , t _{PZL}	Propagation Delay Time Control Input to Signal	$R_L = 1.0 \text{ k}\Omega$, $C_L = 50 \text{ pF}$, (Figures 2 and 3)				
	Output High Impedance to	V _{DD} =5V		20	50	ns
	Logical Level	V _{DD} =10V		18	40	ns
		V _{DD} =15V		17	35	ns
t_{PHZ} , t_{PLZ}	Propagation Delay Time Control Input to Signal	$R_L = 1.0 \text{ k}\Omega$, $C_L = 50 \text{ pF}$, (Figures 2 and 3)				
	Output Logical Level to	V _{DD} =5V		15	40	ns
	High Impedance	V _{DD} =10V		11	25	ns
		V _{DD} =15V		10	22	ns
	Sine Wave Distortion	$V_{C}^{-}=V_{DD}^{-}=5V, V_{SS}^{-}=-5$ $R_{L}^{-}=10 \text{ k}\Omega, V_{IS}^{-}=5 V_{P-P}, f=1 \text{ kHz},$ (Figure 4)		0.4		%

AC Electrical Characteristics* (Continued)

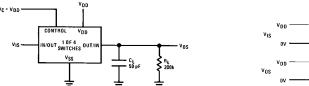
 $T_A = 25$ °C, $t_f = t_f = 20$ ns and $V_{SS} = 0V$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	Frequency Response — Switch "ON" (Frequency at -3 dB)	$V_C = V_{DD} = 5V$, $V_{SS} = -5V$, $R_L = 1 \text{ k}\Omega$, $V_{IS} = 5 \text{ V}_{P-P}$, $20 \text{ Log}_{10} \text{ V}_{OS}/\text{V}_{OS}$ (1 kHz) $-\text{dB}$, (Figure 4)		40		MHz
	Feedthrough — Switch "OFF" (Frequency at -50 dB)	$V_{DD} = 5V$, $V_{C} = V_{SS} = -5V$, $R_{L} = 1 \text{ k}\Omega$, $V_{IS} = 5 \text{ V}_{P-P}$, $20 \text{ Log}_{10} (V_{OS}/V_{IS}) = -50 \text{ dB}$, (Figure 4)		1.25		MHz
	Crosstalk Between Any Two Switches (Frequency at -50 dB)	$V_{DD} = V_{C(A)} = 5V$; $V_{SS} = V_{C(B)} = -5V$, $R_L = 1 \text{ k}\Omega V_{IS(A)} = 5 \text{ Vp.p.}$ 20 Log ₁₀ ($V_{OS(B)}/V_{OS(A)}$) = -50 dB , (Figure 5)		0.9		MHz
	Crosstalk; Control Input to Signal Output Maximum Control Input	V_{DD} = 10V, R_L = 10 k Ω R_{IN} = 1 k Ω , V_{CC} = 10V Square Wave, C_L = 50 pF (<i>Figure 6</i>) R_L = 1 k Ω , C_L = 50 pF, (<i>Figure 7</i>)		150		mV _{P-P}
	·	$V_{OS(f)} = \frac{1}{2} V_{OS}(1 \text{ kHz})$ $V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		6.5 8.0 9.0		MHz MHz MHz
C _{IS}	Signal Input Capacitance			4		pF
Cos	Signal Output Capacitance	V _{DD} = 10V		4		pF
C _{IOS}	Feedthrough Capacitance	V _C =0V		0.2		pF
C _{IN}	Control Input Capacitance			5	7.5	pF

^{*}AC Paramters are guaranteed by DC correlated testing.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

Note 2: V_{SS}=0V unless otherwise specified.


Note 3: These devices should not be connected to circuits with the power "ON".

Note 4: In all cases, there is approximately 5 pF of probe and jig capacitance on the output; however, this capacitance is included in C_L wherever it is specified.

Note 5: V_{IS} is the voltage at the in/out pin and V_{OS} is the voltage at the out/in pin. V_C is the voltage at the control input.

Note 6: If the switch input is held at V_{DD} , V_{IHC} is the control input level that will cause the switch output to meet the standard "B" series V_{OH} and I_{OH} output levels. If the analog switch input is connected to V_{SS} , V_{IHC} is the control input level — which allows the switch to sink standard "B" series $|I_{OH}|$, high level current, and still maintain a $V_{OL} \le$ "B" series. These currents are shown in $Figure \ 8$.

AC Test Circuits and Switching Time Waveforms

V_{1S} V_{DD} V_{DD}

Figure 1. t_{PLH} , t_{PLH} Propagation Delay Time Signal Input to Signal Output

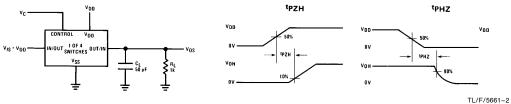
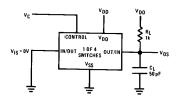
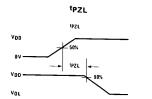
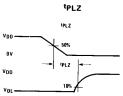
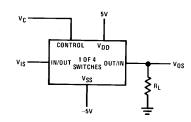
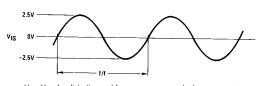
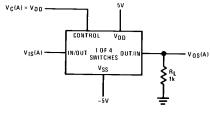
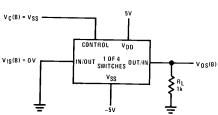




FIGURE 2. $t_{\mbox{\scriptsize PZH}}, t_{\mbox{\scriptsize PHZ}}$ Propagation Delay Time Control to Signal Output

AC Test Circuits and Switching Time Waveforms (Continued)


FIGURE 3. $t_{\mbox{\scriptsize PZH}}, t_{\mbox{\scriptsize PHZ}}$ Propagation Delay Time Control to Signal Output



 $\rm V_C\!=\!V_{DD}$ for distortion and frequency response tests $\rm V_C\!=\!V_{SS}$ for feedthrough test

FIGURE 4. Sine Wave Distortion, Frequency Response and Feedthrough

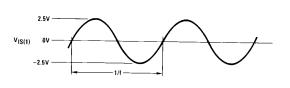
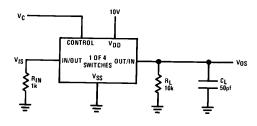



FIGURE 5. Crosstalk Between Any Two Switches

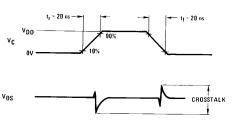


FIGURE 6. Crosstalk — Control to Input Signal Output

AC Test Circuits and Switching Time Waveforms (Continued)

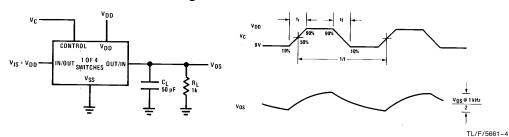
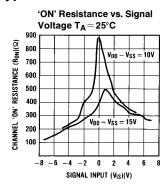


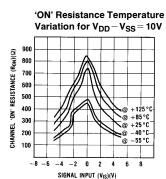
FIGURE 7. Maximum Control Input Frequency

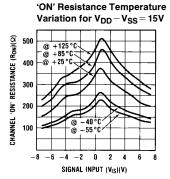
Temperature **Switch Input Switch Output** Range Vos(v) v_{DD} v_{IS} I_{IS} (mA) 25°C Max Min $\mathsf{T}_{\mathsf{LOW}}$ THIGH 5 0 0.25 0.2 0.14 0.4 5 5 -0.25-0.2-0.144.6 10 0 0.62 0.5 0.35 0.5 MILITARY 10 10 -0.62-0.5-0.359.5 15 0 1.8 1.5 1.1 1.5 15 15 -1.8-1.5-1.113.5 5 0 0.2 0.16 0.12 0.4 5 5 -0.2-0.16-0.1210 0 0.5 0.4 0.3 0.5 COMMERCIAL 10 10 -0.5-0.4-0.39.5 15 0 1.4 1.2 1.0 1.5

FIGURE 8. CD4016B Switch Test Conditions for VIHC

-1.2

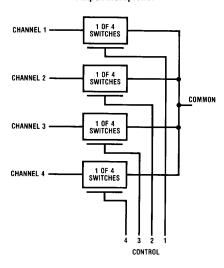

-1.0

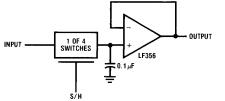

-1.4


Typical Performance Characteristics

15

15




13.5

Typical Applications

4 Input Multiplexer

Sample/Hold Amplifier

TL/F/5661-6

Special Considerations

The CD4016B is composed of 4, two-transistor analog switches. These switches do not have any linearization or compensation circuitry for " R_{ON} " as do the CD4066B's. Because of this, the special operating considerations for the CD4066B do not apply to the CD4016B, but at low

supply voltages, \leq 5V, the CD4016B's on resistance becomes non-linear. It is recommended that at 5V, voltages on the in/out pins be maintained within about 1V of either V_DD or V_SS; and that at 3V the voltages on the in/out pins should be at V_DD or V_SS for reliable operation.

Physical Dimensions inches (millimeters) 0.785 (19.939) MAX [14] [13] [12] [11] [10] [9] [8] 0.025 (0.635) RAD 0.220-0.310 (5.588-7.874) 1 2 3 4 5 6 7 0.290-0.320 0.005 0.200 (D.127) MIN GLASS SEALANT (5.080) MAX 0.020-0.060 (7.366-8.128) 0.060 ±0.005 (1.524 ±0.127) 0.180 (0.508 - 1.524)MA 0.008-0.012 10° MAX (0.203-0.305) 0.310-0.410 D.018 ±0.003 0.125-0.200 0.098 (7.874 - 10.41)(0.457 ±0,076) (3.175-5.080) (2.489) MAX BOTH ENDS 0.100 ±0.010 0.150 (2.540 ±0.254) (3.81) J14A (REV G) MIN **Dual-In-Line Package** Order Number CD4016CJ or CD4016MJ NS Package J14A 14 13 12 11 10 9 8 14 13 12 0.250 ± 0.010 (6.350 ± 0.254) 1 2 3 4 5 6 7 $\frac{0.092}{(2.337)}$ DIA $\frac{0.030}{(0.762)}$ MAX DEPTH OPTION 1 OPTION 02 0.065 0.145 - 0.200 (3.683 - 5.080 0.020 (0.508) MIN 0.125 - 0.150 (3.175 - 3.810) 0.014 - 0.023 (0.356 - 0.584) TYP 0.100 ± 0.010 (2.540 ± 0.254) TYP 0.050 ± 0.010 (1.270 - 0.254) TYP 0.325

LIFE SUPPORT POLICY

Dual-In-Line Package Order Number CD4016CN NS Package N14A

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.

National Semiconductor was acquired by Texas Instruments.

http://www.ti.com/corp/docs/investor_relations/pr_09_23_2011_national_semiconductor.html

This file is the datasheet for the following electronic components:

CD4016 - http://www.ti.com/product/cd4016?HQS=TI-null-null-dscatalog-df-pf-null-wwe